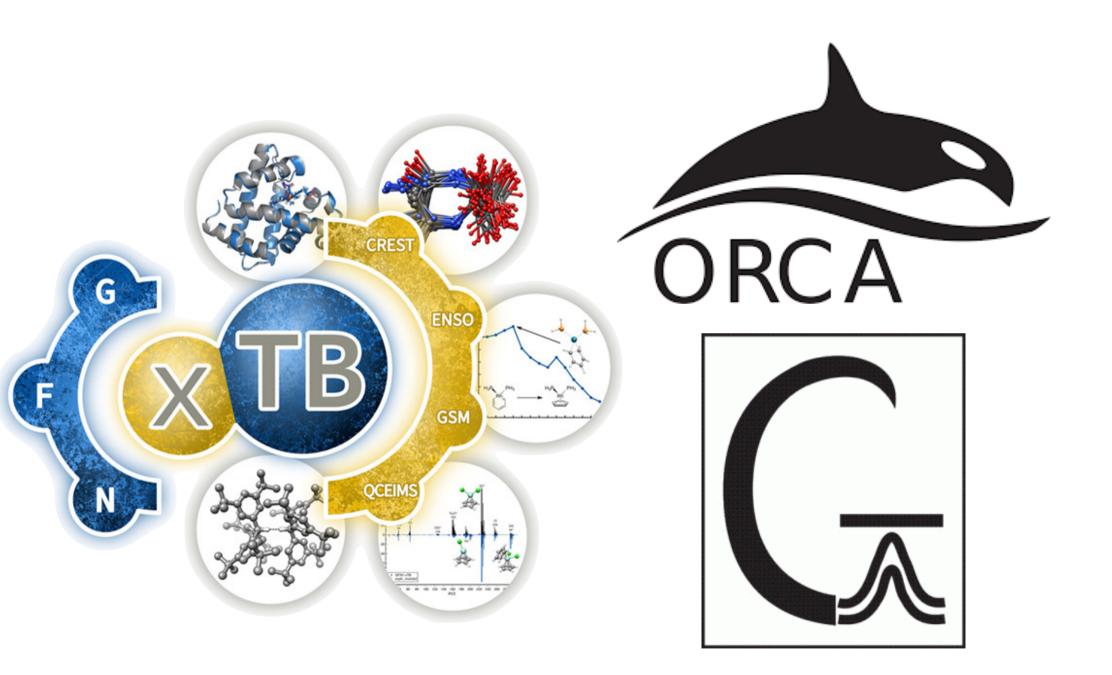
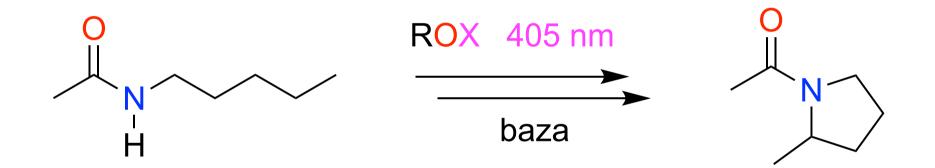

DEI 2022 @ SRCE

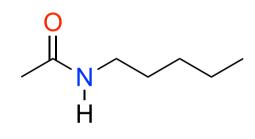

Kvantno-kemijski programi na klasteru Isabella


Rješavanje kemijskih problema upotrebom optimalnih metoda

doc. dr. sc. Davor Šakić Sveučilište u Zagrebu Farmaceutsko-biokemijski fakultet



Hofmann–Löffler–Freytag reakcija



Hofmann–Löffler–Freytag reakcija

Reaktant

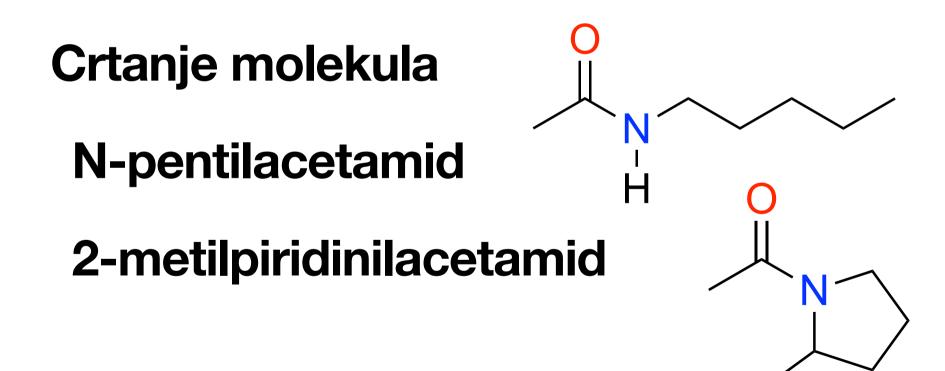
CRTANJE!

- konformacijska analiza reaktanata
- Boltzmannova raspodjela
- tautomerne forme i ravnoteža
- utjecaj otapala implicitno, eksplicitno, kombinirano
 - prva solvatacijska ljuska
 - ostale ljuske
- odabir odgovarajuće teorijske razine

CRTANJE

Avogadro

- besplatan
- interface s drugim programima
- uključeni FF optimizator
- vizualizacija orbitala/frekvencija
- konformacijska analiza


IQmol

besplatan

uključen FF optimizator

direktno pokretanje računa QChem

.xyz format

Formati

.xyz	24 N	2.47853	0.21632	0.04817
Broj atoma	C	1.80729	-1.02331	0.41525
	C	0.27138	-0.90081	0.40757
	C	-0.40452	-0.19974	1.60585
Naslov/prazni red	C C C	-0.13598 -1.00658 3.24995	1.30206 1.90240 0.34913	1.75733 2.85924
Element x y z	0 C	3.41030 3.91446	-0.58626 1.66084	-1.06774 -1.83902 -1.36366
	H	2.39153	1.03499	0.65793
	H	2.16405	-1.38063	1.40468
	H	2.05733	-1.81560	-0.32309
	H	-0.11720	-1.94312	0.43902
	H	-0.06444	-0.45524	-0.55404
	H	-0.12845	-0.72263	2.54777
	H	-1.49951 -0.36186	-0.32829 1.82318	1.45423 0.80187
Položaji u angs	H	0.91291	1.48012	2.05031
	H	-2.08304	1.77534	2.61589
	H	-0.79182	2.98780	2.95432
	H	-0.79246	1.41114	3.83255
	H	3.14369	2.45228	-1.47318
	H	4.50268	1.60209	-2.30450
	н	4.59809	1.92887	-0.53112

.pdb

.sdf

.com

.mol

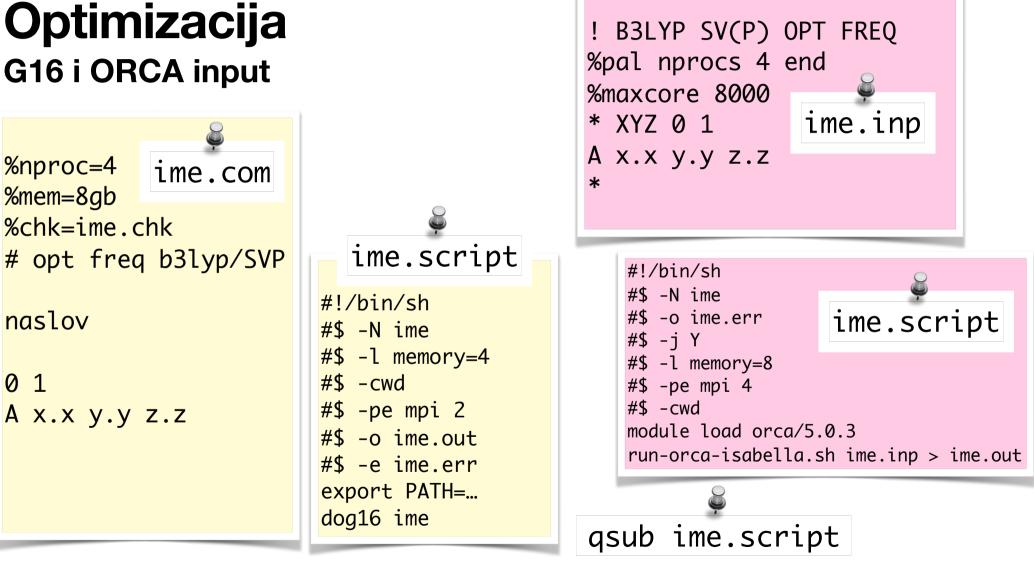
Brza optimizacija i konformacijska analiza

- semi-empirijske metode
- AM1, PM3, PM6 xtb ime.xyz -opt --chrg 0 --uhf 0 --namespace ime
- GFN-1, GFN-2

CREST, MD, MTD

ime.xtbopt.xyz

ime.xyz

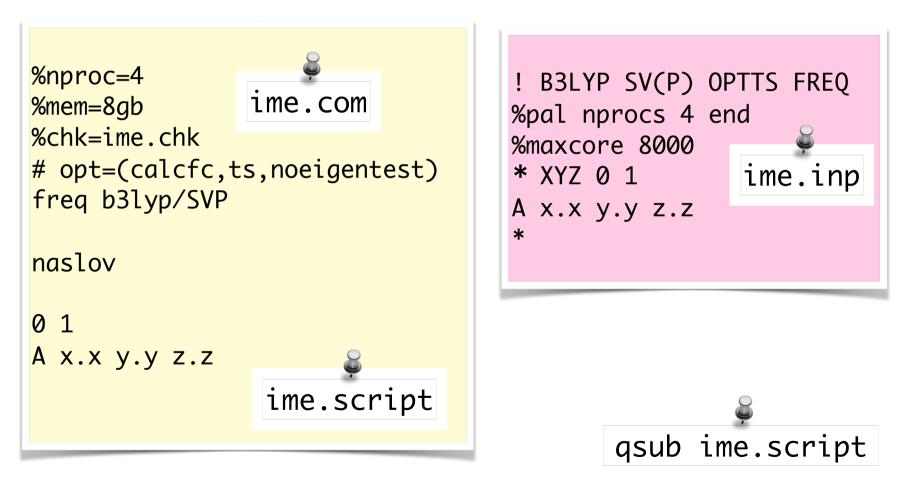

xtb ime.xtbopt.xyz -hess --chrg 0 --uhf 0 --namespace ime.xtbopt

ime.xtbopt.q98.out

- crest ime.xtbopt.xyz -T 4 --v4 --gfn2 --chrg 0 --uhf 0 GFN-FF crest_conformers.xyz
- ENSO, CENSO, QCxMS

https://xtb-docs.readthedocs.io/en/latest/contents.html

Optimizacija G16 i ORCA input

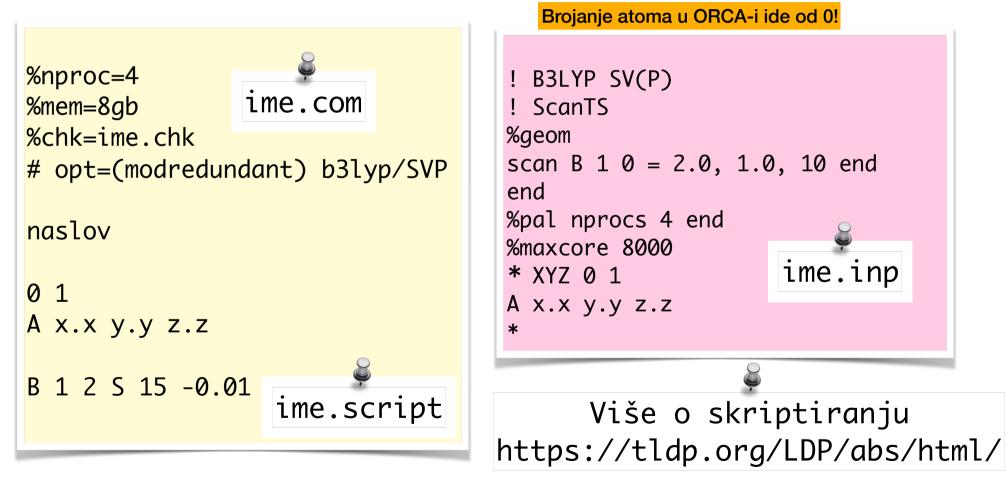

Odabir metoda i baznih skupova

Basis Set	Applies to	Polarization	Diffuse Functions	Local and grad	lient			
Basis Set 3-21G 6-21G 4-31G 6-31G 6-31G 0-95 D95V SHC CEP-4G CEP-4G CEP-121G LanL2MB LanL2DZ SDD, SDDAII cc-pVDZ cc-pVTZ cc-pVQZ cc-pV5Z cc-pV6Z SV SVP TZV and TZVP	Applies to H-Xe H-Cl H-Ne H-Kr H-Cl H-Kr H-Cl H-Ne H-Cl H-Rn H-Ar, Ca-Kr H-Ar, Ca-Kr H-Kr H-Kr H-Kr H-Kr	Polarization Functions * or ** * or ** through (3df,3pd) through (3df,3pd) through (3df,3pd) (d) or (d,p) * * (Li-Ar only) * (Li-Ar only) * (Li-Ar only) * (Li-Ar only) * (Li-Ar only) included in definitio included in definitio included in definitio included in definitio included in definitio included in definitio	+ +,++ +,++ +,++ +,++	Local and grad HFS LDA or LSD VWN or VWN5 VWN3 PWLDA BP86 or BP BLYP OLYP GLYP XLYP PW91 mPWPW mPWLYP PBE RPBE RPBE REVPBE RPW86PBE PWP	Hybrid functionals	TPSS TPSSh TPSS0 M06L M06 M062X PW6B95 B97M-V B97M-D3BJ	 wB97 wB97X wB97X-D3 wB97X-D4 wB97X-V wB97X-D3BJ wB97M-V wB97M-D3BJ wB97M-D4 CAM-B3LYP 	B2PLYP mPW2PLYP B2GP-PLYP B2K-PLYP B2T-PLYP PWPB95
cc-pV5Z cc-pV6Z SV SVP	H-Ar, Ca-Kr H, B-Ne H-Kr H-Kr H-Kr	included in definitio included in definitio included in definitio	n n n n n	RPW86PBE PBE0 PWP REVPI REVPI	PBE0 REVPBE0 REVPBE38 BHANDHLYP BB38 BHANDHLYP			B2T-PLYP

H-Xe

DGDZVP

Traženje prijelaznog stanja - iz nacrtane strukture G16 i ORCA input


Traženje prijelaznog stanja - iz reaktanata/produkata G16 i ORCA input

		! B3LYP SV(P) NEB-TS FREQ
%nproc=4 %mem=8gb	%nproc=4 %mem=8gb %chk=ime.chk	%pal nprocs 4 end %maxcore 8000 %NEB NEB_END_XYZFILE "produkt.xyz"
%chk=ime.chk # opt=(qst2) freq b3lyp/SVP	<pre># opt=(qst3) freq b3lyp/SVP reaktant</pre>	END * XYZfile 0 1 reaktant.xyz
reaktant	0 1 A x.x y.y z.z	ime.i
01 A x.x y.y z.z produkt ime.script 01	produkt Ø 1 A x.x y.y z.z TS Ø 1	<pre>! B3LYP SV(P) NEB-TS FREQ %pal nprocs 4 end %maxcore 8000 %NEB NEB_END_XYZFILE "produkt.xyz" NEB_TS_XYZFILE "mislimTS.xyz" END * XYZfile 0 1 reaktant.xyz</pre>
A x.x y.y z.z	A x.x y.y z.z	U skripti obavezno naves podaci i gdje se prebao

0 1 reaktant.xyz U skripti obavezno navesti koji podaci i gdje se prebacuju

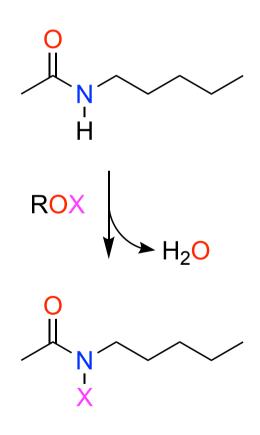
ime.inp

Traženje prijelaznog stanja - pretraživanje PES-a G16 i ORCA input

Traženje prijelaznog stanja:

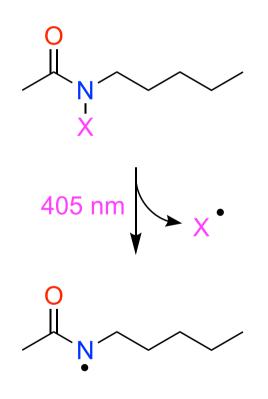
cis/trans amid

amid/imid


Karakterizacija minimuma

Energijski račun na zahtjevnijim metodama

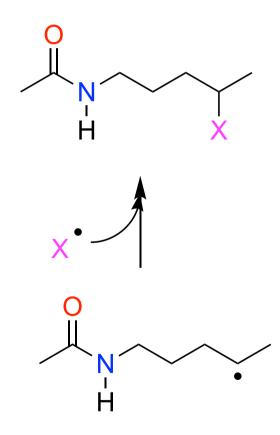
G3B3


! DLPNO-CCSD(T) DEF2-TZVPP DEF2-TZVPP/C

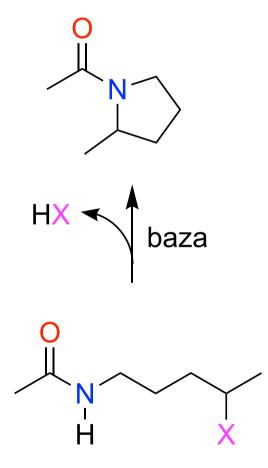
Halogeniranje


- određivanje reakcijskih parametara za HOCI
- prijelazno stanje kloriranja za amido i imido formu
- IRC računi
- globalni, lokalni minimumi
- termodinamika i kinetika reakcije
- promjena halogena
- promjena R-supstituenta (npr. AcOX)

Homolitičko cijepanje N-halogen veze


- skeniranje reakcijske koordinate
- plohe potencijalne energije
- singlet vs triplet
- elektronski prijelazi
- promjena redosljeda popunjavanja orbitala

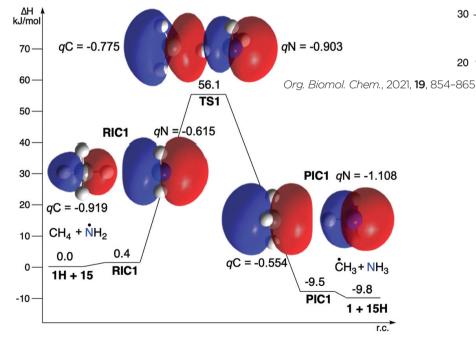
Prijenos atoma vodika (HAT)

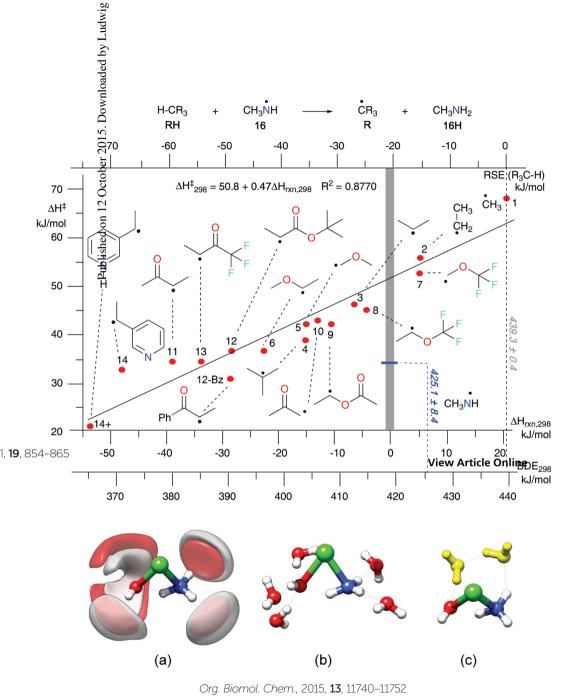

- stabilnost N- i C- radikala (termodinamika)
- određivanje kompeticijskih reakcija
 - 1,2-HAT, 1,3-HAT, 1,4-HAT i 1,5-HAT
- intra- vs inter-HAT (dodatni modelni sustavi)

Stvaranje C-halogen veze

- skeniranje reakcijske koordinate
- plohe potencijalne energije
- singlet vs triplet
- elektronski prijelazi
- računanje spektara
 - IR, NMR/EPR, UV/Vis
 - obavezno standard

Zatvaranje peteročlanog prstena




- S_N2 reakcija
- uloga baze
- uloga otapala
- stabilnost produkata
- teorijska razina
- provjera u odnosu na eksperimentalne podatke

Prikaz rezultata

Table 3 RSE, $\Delta H_{rxn,298}$, and $\Delta H_{298}^{\ddagger}$ values for all systems shown in Chart 3

Species	RSE (<i>N</i> -rad)	RSE (<i>C</i> -rad)	BDE (N-H) _{calc.}	BDE (C-H) _{calc.}	$\Delta H_{ m rxn,298}$	$\Delta H^{\ddagger}_{298}$
L1	-33.8	-71.0	416.3	368.3	-47.9	45.7
L1+	-40.5	-89.4	409.6	349.9	-59.6	46.0
L2	-58.4	-71.1	391.7	368.3	-23.4	54.2
L2+	-71.7	-89.0	378.4	350.3	-28.0	54.0
L3	-26.1	-66.7	424.0	372.7	-43.0	30.1
L4	-2.0	-63.5	448.1	375.8	-82.9	18.5
L5	2.0	-75.2	452.0	364.1	-87.2	16.2
L6	15.4	-73.7	465.5	365.6	-99.3	4.8

nen on 09/12/2015 07:55:07.

PART OF FARMINOVA PROJECT