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previous mechanistic studies that characterized the 1,5-HAT as
the rate-limiting step of the overall process.[15a,15b,16,17]

Figure 4. EPR spectra of nitrogen-centered radicals. a) EPR spectrum after the
N-I homolytic cleavage in 2a. b) EPR spectrum after the N-Br homolytic cleav-
age in 2b. c) Comparation of the two EPR spectra of 3 generated after the
homolyses of the N-I and N-Br intermediates. d) Silent spectrum of the N-Cl
derivative 2c.
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Following the crucial argument on the convergent formation
of the sulfonamidyl radical 3 from both halogenated precursors
2a,b, the N-Br intermediate 2b was investigated in a subse-
quent experiment under light-initiation. Gratifyingly, the spec-
trum revealed that the identical N-centered radical 3 was
formed in this case (Figure 4b). The spectra of the detected N-
centered radical are in full agreement with the simulated spec-
tra.[22] By overlapping the two experimental spectra of the two
amidyl radicals generated from the respective N-I and N-Br pre-
cursors 2a and 2b, we were pleased to see that they indeed
correspond to the same N-centered radical (Figure 4c).

While the previous N-halo sulfonamides are highly reactive
and therefore of significantly lower stabilities that vary from a
life time of less than 5 minutes in the case of the N-I intermedi-
ate 2a to a half-life time of half an hour for the N-Br intermedi-
ate 2b, the corresponding N-chloro derivative 2c was found to
be stable for two weeks. The stability of this compound can be
experimentally proven as the N-Cl derivative provided only an
EPR silent spectrum, even after prolonged irradiation at 350 nm
(Figure 4d). In general, N-chloro derivatives of this type have
been widely used as starting materials for more robust stoichio-
metric transformations.[23,24] Due to their stability, as proven
above, external factors are required in order to engage them
into reaction, and photoredox catalysis has been suggested as
a useful mode to this end.[19,25]

For compounds 2a,b the reported stoichiometric reactions
proceed to the formation of the pyrrolidine product 4 under
the conditions of photochemical C-X bond cleavage.[22] This
confirms that the detected amidyl radicals are true intermedi-
ates of the overall C-H amination process. It further suggests
that the catalytic reaction conditions can also be employed to
generate stoichiometric reagents for the Hofmann–Löffler reac-
tion.[26]

Moreover, unlike in the cases of the traditional N-haloamines,
the presence of acid does not constitute a requirement for the
amidyl radical formation in the present sulfonamide case. This
explains the high functional group tolerance for the catalytic
Hoffmann–Löffler reaction and makes it a unique tool in hetero-
cycle synthesis.

Conclusions
In conclusion, the important amidyl radical intermediate from
the halogen-catalyzed Hoffmann–Löffler reaction could be de-
tected for the first time by EPR spectroscopy. Its identification
fully corroborates previous experimental and computational
mechanistic conclusions on this reaction.
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Figure 3. NMR charts for evidences of the in situ formation of the N-I and of the N-Br species. NMR recorded in d4-DCE at t < 10 min. Conditions: a) 1
(1 equiv.), I2 (1 equiv.) and PhI(O2CAr)2 [Ar = 3-Cl-C6H4] (1 equiv.) b) 1 (1 equiv.), NBu4Br (1 equiv.) and mCPBA (2 equiv.). Blue circles: signals corresponding
to 1. Pink triangles: signals corresponding to N-I intermediate 2a. Brown squares: signals corresponding to N-Br intermediate 2b. Full peak assignment is
provided in the Supporting Information.[22]

and the N-brominated precursors 2a and 2b, respectively. In
fact, both compounds must give rise to the identical intermedi-
ate 3 (Scheme 2).

EPR measurements were performed under the conditions
that had been applied for the in situ generation and detection
of the two N-halogenated intermediates 2a,b from Figure 3.
Employing visible light irradiation, we first recorded the EPR
spectrum of the N-centered radical formed from the N-I inter-
mediate 2a (Figure 4a). A single clean signal was obtained,
which perfectly matches with the predicted N-centered radical
3. This signal did not give rise to a second signal over time but
decayed in intensity. Obviously, the C-centered radical interme-
diate A could not be detected which is in full agreement with
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Scheme 2. Mechanistic context of amidyl radical formation: convergent path-
way from the N-iodo and the N-bromo intermediates.
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Detection of the Elusive Nitrogen-Centered Radicals from
Catalytic Hofmann–Löffler Reactions
Alexandra E. Bosnidou,[a,b] Thomas Duhamel,[a,c] and Kilian Muñiz*[a,d]

Abstract: The catalytic Hofmann–Löffler reaction represents a
uniquely effective protocol for the formation of pharmaceuti-
cally relevant heterocycles and is based on the reactivity of
N-halogenated amines. Herein, we report stoichiometric experi-
mentation toward the detection of a sulfonamidyl radical as the

Introduction
Nature recurs to heterocycles as main constituents in biomole-
cules.[1] The inherent feature to incorporate given heteroatom-
based functional groups into a ring system of enhanced stabil-
ity greatly facilitates the storage of chemical and biological in-
formation. In the field of aminated molecules, nitrogenated ali-
phatic rings are favorite core structures in molecular assem-
blies,[2] a concept that has been of high recurrence throughout
biomolecular evolution and is equally attractive to compound
design in medicinal and pharmaceutical chemistry.[3–5] As a re-
sult, among the diverse class of three-dimensional heterocyclic
cores, aminated alicyclic rings constitute privileged motifs.[5]

The pyrrolidine core has been recognized as one of the pre-
eminent motifs in the field.[1b,5] There are multiple ways to its
synthesis, in which due to economic and strategic aspects the
direct C(sp3)-H amination stands out.

Apart from recent contributions by transition metal chemis-
try,[6] this transformation is most conveniently carried out using
the venerable Hofmann–Löffler reaction.[7] Under its standard
conditions, a N-halogenated amine is submitted to light or tem-
perature induced C-H amination, in which the key intermediate
has been identified as a nitrogen-centered radical.[8]

In general, nitrogen-centered radicals can be employed for
the above transformations in an effective and more environ-
mentally friendly manner. Though the previous perception of
radicals as non-selective intermediates in synthesis has been
revised, carbon-centered radicals have received significantly
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decisive intermediate in this C-H amination reaction. It can be
observed by EPR after homolytic cleavage of the in situ formed
N-halogen bond under the conditions of the iodine or bromine
catalyzed Hofmann–Löffler reaction.

more attention compared to the nitrogen counterparts.[9] A
general strategy for the generation of amidyl radicals relies on
photochemical or thermal homolysis of a nitrogen–heteroatom
bond, in which the heteroatom is traditionally a halogen.[10] In
the original Hofmann–Löffler reaction, harsh acidic conditions
and elevated temperature are required to cleave the N-X
bond.[11] Wawzonek investigated the course of the cyclization
and found that after irradiation of a N-chloroamine with ultra-
violet light in sulfuric acid, the N-methyl pyrrolidine product
was formed in a higher yield than in the absence of light.[12]

Based on this evidence, a radical chain mechanism was con-
cluded. A subsequent extensive mechanistic study by Corey
confirmed this cleavage to proceed homolytically to the corre-
sponding N-centered radical.[13] A subsequent 1,5-hydrogen
atom transfer (1,5-HAT) takes place yielding the carbon-cen-
tered radical. Following a radical chain mechanism, a γ-halogen-
ated amine is formed, which upon basic treatment undergoes
ionic cyclization to the final pyrrolidine (Scheme 1).

Scheme 1. Corey-mechanism for the original Hofmann–Löffler reaction.

Owing to these mechanistic studies, the Hofmann–Löffler re-
action is a well-understood transformation that enables hetero-
cycle formation from selective amination at non-activated ali-
phatic C-H bonds.[7,10] In seminal work, Schreiner and Gandel-
mann have recently reported the use of N-iodohydantoins for
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Detecting elusive radicals using spin traps.  
Case study on Hofmann-Löffler-Freytag reaction

Hofmann-Löffler-Freytag reaction 
• The Hofmann-Löffler-Freytag (HLF) reaction was discovered in 

the late 19th and has advanced rapidly in the last 20 years 

• It is used to form a C-N bond at unsubstituted C-H positions, 
as well as to insert pyrrolidine and piperidine rings in an 
environmentally friendly manner, without the use of expensive 
metal catalysts and through highly efficient syntheses 

• Mechanism of this reaction is not yet clearly understood, and 
further experiments are needed to determine all reaction 
parameters

CONCLUSIONS 
• HLF reaction works 

• Reactive intermediates cannot be caught without PBN 

• Short lifetime of reactive intermediates 

• PBN captures all radicals; w/ chlorine - very fast reaction 

• Difficult to see the N-radical and the conversion of N- to C-
radical  

• (co)excess of PBN leads to reactions of PBN with itself  

• Future attempts will be made to trap N-radicals by freezing 
in a finger-dewar 
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Comment on “Detection of the Elusive Nitrogen-Centered
Radicals from Catalytic Hofmann–Löffler Reactions”
Hans-Gert Korth*[a]

Abstract: Missing !-hydrogen hyperfine splittings and incon-
sistent g-factors reveal that the proposed sulfamidyl radical has
not been detected by EPR spectroscopy on photolysis of

In a recent paper in this journal, Bosnidou et al.[1] claimed to
have detected, by photolysis of an in-situ generated N-iodide,
“... the Elusive Nitrogen-Centered Radicals from Catalytic
Hofmann–Löffler-Reactions” by means of EPR spectrometry.
However, their assignment of the recorded three-line EPR spec-
tra to (primarily) the sulfamidyl (sulfonylaminyl) radical 1 (Fig-
ure 1) as the reactive nitrogen-centered radical intermediate
in the Hofmann–Löffler reaction is not in conformity with the
reported spectral properties.

Figure 1. Sulfamidyl radical 1 as proposed in ref.[1] and the derived nitroxide
radical 2.

The EPR spectra of ref.[1] all show simple (overlapping) 1:1:1
three-line signals at g = 2.006–2.008 with 14N hyperfine split-
tings (hfs) in the range 7.3–11 G. Whereas the 14N hfs would be
in agreement with sulfonyl-substituted aminyl radicals,[2a–2c] the
g-factors are inconsistent with this class of nitrogen-centered
radicals. The g-values of aminyl/amidyl radicals are generally
lower, around 2.0044 ± 0.0004.[2a–2c] Values of g ≥ 2.006 rather
strongly point to nitroxide (aminyloxyl) radicals.[2a,2d–2g] How-
ever, neither the proposed sulfamidyl radical 1 nor the derived
sulfonyl nitroxide radical 2 are in agreement with the observed
EPR spectra. The essential point is the missing of a splitting of
the EPR signal by interaction with the two !-H atoms, as evident
from numerous experimental data.[2] In particular, the !-H split-
tings in aminyl/amidyl radicals are characteristically large, in the
40 G range.[2a–2c] This is fully confirmed by (SMD)B3LYP/CBSB7
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N-halogenated sulfonamides. Rather, nitroxide radicals formed
via side reactions have been observed.

density functional theory (DFT) computations, which predict !-
H splittings of about 43.0 G and 6.8 G for the model compounds
3 and 4, with g-values in correspondence with amidyl and
nitroxide radicals, respectively (Table 1). (The related 14N hfs are
quite similar, thus do not allow a clear discrimination between
amidyl and nitroxide radicals). In any case, the missing !-H hfs
clearly rule out structures 1 or 2.

Table 1. Computed and experimental EPR parameters for sulfonyl-substituted
aminyl and nitroxyl radicals.[a]

[a] DFT computations on the UB3LYP/CBSB7 level of theory employing the
SMD solvation model for toluene solution. [b] Experimental data (in benzene)
from ref.;[4] Ts = para-tolylsulfonyl. [c] Experimental data (in toluene) from
Figure 4a and SI, p. S11, of ref.[1]

The missing !-H hfs either point to tertiary carbon substitu-
ents,[3] carbonyl substituents (14N hfs in the range 7–10 G and
g-factors ≥ 2.006 are very typical for α-carbonyl nitroxides), or
non-magnetic heteroatom substituents at N (in addition to the
Ts substituent).[2a,2d–2g] In fact, the major triplet signal in the
EPR spectra of ref.[1] is similar to the reported EPR spectrum of
bis(tosyl)nitroxide (5),[4] which is supported by the computed
EPR parameters of the model compounds bis(phenylsulfonyl)-
nitroxide (6) and bis(phenylsulfonyl)aminyl (7) (Table 1).
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density functional theory (DFT) computations, which predict !-
H splittings of about 43.0 G and 6.8 G for the model compounds
3 and 4, with g-values in correspondence with amidyl and
nitroxide radicals, respectively (Table 1). (The related 14N hfs are
quite similar, thus do not allow a clear discrimination between
amidyl and nitroxide radicals). In any case, the missing !-H hfs
clearly rule out structures 1 or 2.
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The missing !-H hfs either point to tertiary carbon substitu-
ents,[3] carbonyl substituents (14N hfs in the range 7–10 G and
g-factors ≥ 2.006 are very typical for α-carbonyl nitroxides), or
non-magnetic heteroatom substituents at N (in addition to the
Ts substituent).[2a,2d–2g] In fact, the major triplet signal in the
EPR spectra of ref.[1] is similar to the reported EPR spectrum of
bis(tosyl)nitroxide (5),[4] which is supported by the computed
EPR parameters of the model compounds bis(phenylsulfonyl)-
nitroxide (6) and bis(phenylsulfonyl)aminyl (7) (Table 1).
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ClElectron paramagnetic resonance and HLF 
• N-centered radical has supposedly been detected via EPR 

measurements by the Muñiz group.[1] This would represent the 
first detection of radical intermediates in the HLF reaction  

• However, suspicion was raised by Khort,[2] who has disproved 
work done by the Muñiz group with his calculations 

Materials and methods  
• Thin-layer chromatography-TLC on pre-coated TLC plates ALUGRAM SIL G/UV254, 0.20 

mm silica gel 60 with fluorescent indicator UV254 (Macherey-Nagel) in the appropriate 
solvent system, with UV detection at 254 nm after immersion in an aqueous solution of 
KMnO4 followed by heating  

• Column chromatography on silica gel (Macherey-Nagel) 0.063-0.2 mm, and appropriate 
solvent mixtures were used as eluents: petroleum ether/ethyl acetate 

• FTIR spectra recorded on an Agilent Cary 630 FTIR spectrometer with air as background. 

• ELEXSYS E 500 EPR X-band spectrometer (Electron paramagnetic spectrometer) with 
visualEPR for visualisation  

• Spin trap: PBN, N-tert-butyl-α-phenylnitrone 

• Kessil lamps: 370 nm, 427 nm, 467 nm, 525 nm 

+

N
O

O
N

O

Cl

N
H
O

N

H
O

N
O

O
N

H
O

N

H HCl

N
S O

O

H3C

N
S O

O

H3C

Kessil lamps,
low intensity 

1 second

Cl

N

H
O

+

Cl

N
H

O
++

N
H
N O

S
O

CH3

OCl +

PBN-Cl side reaction


