

Light-Driven Functionalization of Unreactive Sites Using Oxidative Amination

doc. dr. sc. Davor Šakić

Light-Driven Functionalization of Unreactive Sites Using Oxidative Animation LIGHT-N-RING

Funded by:

Supported by:


Project details

doc. dr. sc. Davor Šakić HRZZ project UIP-2020-02-4857

February 1, 2021 - January 31, 2026

Project budget: 2 000 000,00 kn Location: University of Zagreb,

Faculty of Pharmacy and Biochemistry

Team

doc. dr. sc. Davor Šakić

dr. sc. Mirsada Ćehić

dr. sc. Ana Karković Marković

Team

dr. sc. Ana Karković Marković

doc. dr. sc. Davor Šakić

Collaboration

Prof. Hendrik Zipse, Ludwig-Maximilian University, Munich, Germany mixed computational and organic synthesis lab with ample experience in radical chemistry and advanced organic synthesis

Prof. Armin R. Ofial, Ludwig-Maximilian University, Munich, Germany extensive experience in stopped-flow and quench-flow techniques

Prof. Moisés Canle López, University of A Coruña, A Coruña, Spain expertise in laser-flash photolysis and radical trapping

Research

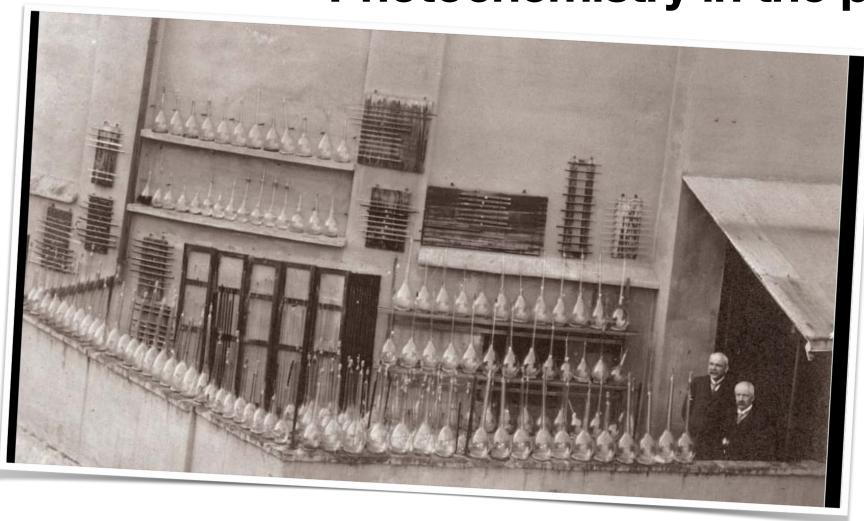
Facilities:

University of Zagreb, Faculty of Pharmacy and Biochemistry (pharma.unizg.hr)

FarmInova lab @ Center for Translational Research and Innovation in Pharmacy

thermodynamic lab @ Department of General and inorganic Chemistry

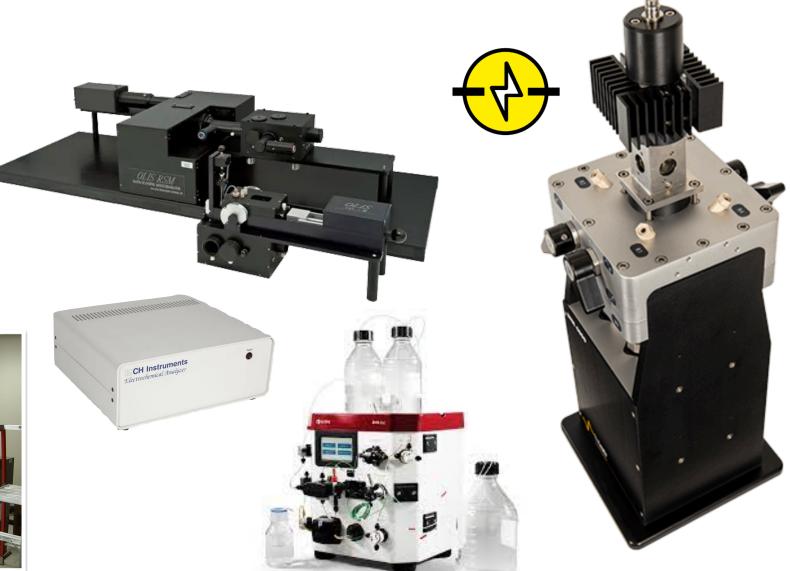
kinetics lab @ Department of Physical Chemistry


NMR lab @ Department of Organic Chemistry

EPR lab @ Department of Biophysics

Isabella Cluster @ SRCE (https://www.srce.unizg.hr/en/isabella-cluster)

Photochemistry in the past



Research

Equipment:

Research **Programs & workstations:**

Chemistry at the speed of graphics...

High Precision Quantum Chemistry Simulation ...a magnitude faster...

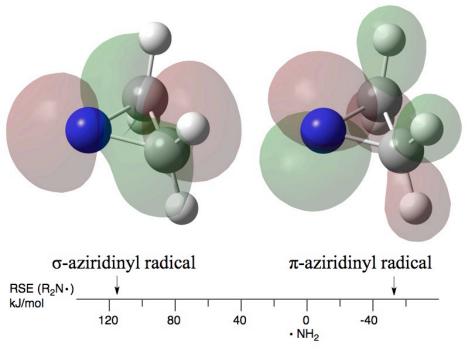
GPU module for Q-CHEM: BrianQC

BrianQC is a GPU module for Q-Chem. It speeds up Density Functional Theory and Hartree-Fock single point, geometry optimization and frequency calculations and many other methods.

Additionally use BrianQC as a quantum chemical Software Development Kit (SDK) and build the application you want.

Publications

Organic & Biomolecular Chemistry


PAPER

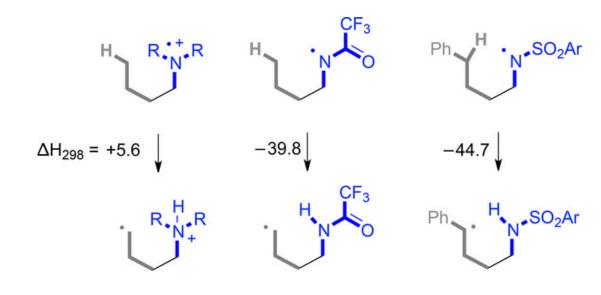
View Article Online
View Journal | View Issue

The stability of nitrogen-centered radicals†

Cite this: Org. Biomol. Chem., 2015, Johnny Hioe, a Davor Šakić, b Valerije Vrček*b and Hendrik Zipse*a 13. 157

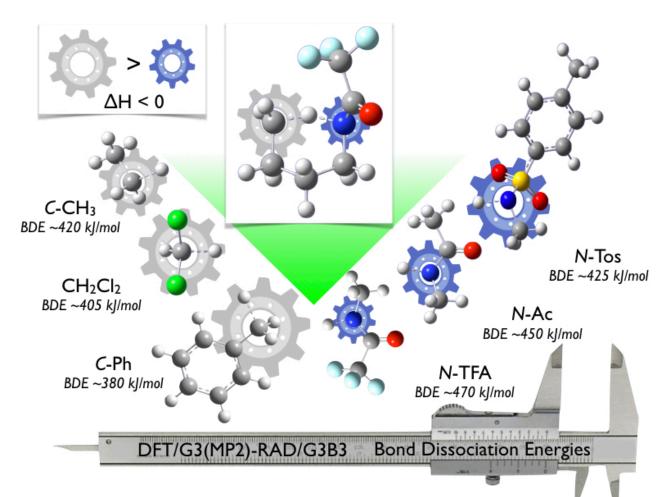
FULL PAPERS

DOI: 10.1002/adsc.201600629


W Very Important Publication

Radical Stability as a Guideline in C-H Amination Reactions

Davor Šakić^a and Hendrik Zipse^{b,*}

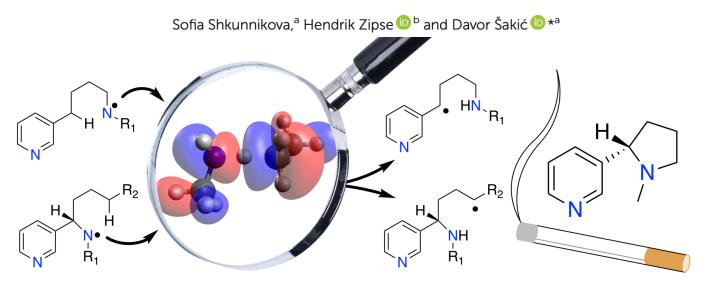

- ^a University of Zagreb, Faculty of Pharmacy and Biochemistry, Ante Kovačića 1, 10000 Zagreb, Croatia
- b Department of Chemistry, LMU Muenchen, Butenandtstrasse 5–13, 81377 Muenchen, Germany Fax: (+49)-89-2180-77738; phone: (+49)-89-2180-77737; e-mail: zipse@cup.uni-muenchen.de

Received: June 17, 2016; Revised: August 22, 2016; Published online: September 21, 2016

Publications

Publications

Organic & Biomolecular Chemistry



PAPER

Cite this: *Org. Biomol. Chem.*, 2021, **19**, 854

Role of substituents in the Hofmann-Löffler-Freytag reaction. A quantum-chemical case study on nicotine synthesis†‡

Activities

- Establishment of the new research group
- Computational modelling of the HLF reaction mechanism and parameters of its regiospecificity
- Quantifying the role of the oxidant in the shift from inter- to intramolecular HAT steps
- Fine-tuning of the N-centered radicals' stability in order to increase the number of available substrates. EPR investigation of radical generation by irradiation or electrochemically.
- Finding a switch between radical and ionic pathways, which can be utilized to develop stereospecific transformations, or activate unreactive substrates
- Preparation of a new research proposal: Application of the HLF procedure in pharmaceutical synthesis

Thank you

