

Regioselectivity in the Hofmann–Löffler–Freytag Reaction: A Computational Analysis of Rearrangement Reactions

Gabrijel Zubčić,^a Erim Bešić,^a Jiangyang You,^b Valerije Vrček,^a Hendrik Zipse,^c Davor Šakića

a)-Faculty of Pharmacy and Biochemistry University of Zagreb, Zagreb, Croatia b)-Ruđer Bošković Institute, Zagreb, Croatia

c)-Department of Chemistry, Ludwig-Maximilians-Universität München, München, Germany

INTRODUCTION:

Hofmann-Löffler-Freytag (HLF) reaction has seen a resurgence in interest due to shift from metalbased catalysis to organo-catalysis. Recent onepot approach requires hypervalent iodine oxidant combined with source of iodine (I₂ or Nal) generates in situ halogenating reagent.

Homolytacally cleaved N-halogen bond under visible light produces N-centered radicals that rearrange to a more stable C-centered radical via 1,5-HAT. This well described process produces predominately pyrrolidine, while trace amounts of piperidine is formed via competing 1,6-HAT. Regioselective synthesis of piperidine is usually done when C5 position is blocked, or when C6 position provides greater thermodynamic driving force.

START

N-rad

N-rad

C6-rad

1,5-HAT_{NC}

 $1,6-HAT_{NC}$

1,5-HAT_{CC}

F₃C²

1,5-HAT

1,6-HAT

H₂C

