

EPR and NMR Investigation of Hofmann–Löffler–Freytag Reaction: Detection of *N*-centered Radical

<u>Gabrijel Zubčić</u>,^[a] Jiangyang You,^[b] Maria Kolympadi Marković,^[c] Fabian Zott,^[d] Salavat Ashirbaev,^[d] Erim Bešić,^[a] Valerije Vrček,^[a] Hendrik Zipse,^[d] and Davor Šakić^[a]

[a] University of Zagreb, Zagreb, Croatia [b] Institute Ruder Bošković, Zagreb, Croatia [c] University of Rijeka, Rijeka, Croatia [d] Ludwig-Maximilians-Universität München, München, Germany

•The Hofmann-Löffler-Freytag (HLF) reaction is used to functionalize distant C-H bonds,^[1] producing pyrrolidine rings or C5-substituted compounds.

•Crucial step of the reaction mechanism involves a rearrangement from an N-centered radical via 1,5-hydrogen atom transfer (HAT).

•Although, Roizen^[2] and Muñiz^[3] groups have reported on the formation of piperidine and C6halogenated products via 1,6-HAT.

- Electronic paramagnetic resonance

• Essential elementary step of the HLF reaction is

[2] M. A. Short, M. F. Shehata, M. A. Sanders, J. L. Roizen, *Chem. Sci.*, **2020**, *11*, 217.

[1]. T. Cernak, K. D. Dykstra, S. Tyagarajan, P. Vachal, S. W. Krska, Chem. Soc. Rev., 2016, 45, 546.

[3] H. Zhang, K. Muñiz, ACS Catal., 2017, 7, 4122.

[5] H. Korth, *Eur. J. Org. Chem.*, **2020**, *40*, 6366.

intramolecular

Whole reaction was observed in NMR experiments.